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Abstract
Background: Primary microcephaly (MCPH) is a congenital neurodevelopmental 
disorder manifesting as small brain and intellectual disability. It underlies isolated 
reduction of the cerebral cortex that is reminiscent of early hominids which makes it 
suitable model disease to study the hominin-specific volumetric expansion of brain. 
Mutations in 25 genes have been reported to cause this disorder. Although majority of 
these genes were discovered in the Pakistani population, still a significant proportion 
of these families remains uninvestigated.
Methods: We studied a cohort of 32 MCPH families from different regions of 
Pakistan. For disease gene identification, genome-wide linkage analysis, Sanger se-
quencing, gene panel, and whole-exome sequencing were performed.
Results: By employing these techniques individually or in combination, we were 
able to discern relevant disease-causing DNA variants. Collectively, 15 novel mu-
tations were observed in five different MCPH genes; ASPM (10), WDR62 (1), 
CDK5RAP2 (1), STIL (2), and CEP135 (1). In addition, 16 known mutations were 
also verified. We reviewed the literature and documented the published mutations 
in six MCPH genes. Intriguingly, our cohort also revealed a recurrent mutation, 
c.7782_7783delGA;p.(Lys2595Serfs*6), of ASPM reported worldwide. Drawing 
from this collective data, we propose two founder mutations, ASPM:c.9557C>G;p.
(Ser3186*) and CENPJ:c.18delC;p.(Ser7Profs*2), in the Pakistani population.
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1  |   INTRODUCTION

Autosomal recessive primary microcephaly (MCPH, MIM 
#251200) is a rare neurodevelopmental disorder that is di-
agnosed by simultaneous observation of reduced head cir-
cumference (HC) of −3 SD (standard deviation)—−2 SD at 
birth—below the expected mean and impaired cognition. 
Neuroimaging of MCPH patients shows isolated cortical hy-
poplasia with preserved architecture and simplified gyration 
(Shaheen et al., 2019; Zaqout, Morris-Rosendahl, & Kaindl, 
2017). MCPH is recognized as a rare disorder, though it is 
highly prevalent in countries with a high rate of consanguinity, 
like Pakistan (1/10,000), while it is only sporadically observed 
(1/1,000,000) in European populations (Cox, Jackson, Bond, & 
Woods, 2006). The genetic etiology of MCPH is heterogeneous 
with mutations reported in as many as 25 different genes play-
ing roles in diverse cellular pathways (Table S1). Among these, 
ASPM (MIM#605481) alone accounts for 68% of cases fol-
lowed by 14% by WDR62 (MIM#613583) and 8% by MCPH1 
(MIM#607117) (Zaqout et al., 2017), whereas other genes were 
reported only in a few families. The most frequently observed 
pathomechanism is abnormal spindle orientation in neural pro-
genitor cells (NPCs), resulting in premature switching from 
both symmetric proliferative and asymmetric self-renewing 

to symmetric consumptive division (Fei, Haffner, & Huttner, 
2014; Fish, Kosodo, Enard, Paabo, & Huttner, 2006). It has 
been proposed that the dysfunction of the MCPH proteins ei-
ther dysregulates cell cycle dynamics or increases apoptosis, 
both of which might disrupt mitotic neurogenesis leading to 
the MCPH phenotype (Cox et al., 2006; Zaqout et al., 2017).

2  |   MATERIALS AND METHODS

2.1  |  Patient consent and ethics approval

With informed consent from parent(s)/guardians, blood sam-
ples and clinical information were collected following the 
rules described in the Declaration of Helsinki. The study was 
approved by the ethics committee of the National Institute for 
Biotechnology and Genetic Engineering (NIBGE) in Faisalabad, 
Pakistan and University of Punjab, Lahore, Pakistan.

2.2  |  Genomic analyses

For disease gene identification, a stepwise approach was 
followed; first, a few families were directed for Sanger 
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Conclusions: We discovered novel DNA variants, impairing the function of genes 
indispensable to build a proper functioning brain. Our study expands the mutational 
spectra of known MCPH genes and also provides supporting evidence to the patho-
genicity of previously reported mutations. These novel DNA variants will be helpful 
for the clinicians and geneticists for establishing reliable diagnostic strategies for 
MCPH families.
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sequencing of ASPM due to the fact that it is the most com-
mon cause of MCPH in Pakistan as well as worldwide 
(Ahmad et al., 2017). Second, a few families were sequenced 
for gene panel customized for screening the reported genes of 

MCPH (Table S2). Third, families excluded from mutations 
in ASPM were subjected to whole-exome sequencing (WES) 
using the Agilent (Santa Clara, CA) version 6 enrichment kit 
and the Illumina HiSeq 4000 sequencing system (paired-end 

F I G U R E  1   Schematic representation of the genomic structure of human WDR62, CDK5RAP2, ASPM, CENPJ, and STIL along with the 
causal variants. Figure shows all the known and novel mutations of WDR62, CDK5RAP2, ASPM, CENPJ, STIL, and CEP135 causing primary and 
syndromic microcephaly due to the mutations in the respective genes. Exons are drawn according to the given scale whereas introns are shown 
as arbitrary lines. White boxes denote untranslated regions. Notice that asterisk (*) represents the novel mutations found in this study. ASPM 
variant;c.3384dupT, previously known as c.3384_3385insT, is renamed according to the HGVS (Human Genome Variation Society) guidelines
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reads, 2 x75 bp). WES data were analyzed using our in-house 
VARBANK database (http://varba​nk.ccg.uni-koeln.de). In 
addition to the above-mentioned approaches, a few families 
were also investigated by genome-wide linkage analysis using 
Illumina (San Diego, CA) HumanCoreExome 12 v1.1 array 
and Affymetrix (Santa Clara, CA) Axiom Precision Medicine 
Research Array (PMRA), as described earlier (Moawia et al., 
2017). WES data analysis provided us with the information 
of potentially pathogenic variants which were further vali-
dated for co-segregation by Sanger sequencing (Figure S3). 
Data obtained by linkage analysis by genotyping of only a 
few selected families corroborated the involvement of the 
identified gene (Figure S4). The identified variants were fur-
ther consulted to calculate the allele frequency in multiple 
databases such as in-house database of Cologne Center for 
Genomics with >1600 exomes, dbSNP151, 1000 Genomes 
(build 20110521), the public Exome Variant Server, NHLBI 
Exome Sequencing Project (ESP), Seattle (build ESP6500), 
gnomAD, Iranome, and the Greater Middle Eastern Variome.

3  |   RESULTS

In this study, we report mutational findings of 32 consanguine-
ous Pakistani families with 98 affected individuals (57 males 
and 41 females)—70 of them were analyzed in this study. The 
patients were recruited according to the diagnostic criteria of 
reduced HC (≥3 SD), intellectual disability, and absence of 
brain atrophy/indicative symptoms. Clinical investigation of 
all affected individuals revealed reduced skull size (head cir-
cumference below −5 SD) and mild to profound intellectual 
disability. In addition, speech impairment, aggressive behav-
ior, and self-care deficits were notable features for most of the 
affected individuals (Figures S1 and S2, and Table S3).

Genetic investigations conducted on 32 families divulged 
that 22 families had mutations in ASPM, 5 in WDR62, 1 in 
CDK5RAP2 (MIM#608201), 1 in CENPJ (MIM#609279), 2 
in STIL (MIM#181590), and 1 in CEP135 (MIM#611423) 
(Figure 1 and Table 1). This information supported the pre-
vious observation of ASPM and WDR62 being the most com-
monly involved genes in MCPH (Ahmad et al., 2017). Notably, 
our genetic investigations revealed 15 novel mutations in five 
different MCPH genes; ASPM (10), WDR62 (1), CDK5RAP2 
(1), STIL (2), and CEP135 (1) (Figure 1 and Table 1).

Out of 22 ASPM linked families, 8 carried 10 novel mu-
tations—seven homozygous in seven families and three 
heterozygous in one family. All of the seven homozygous 
mutations were protein-truncating—four nonsense and three 
frameshifts—which may result in the complete loss-of-func-
tion of ASPM. Interestingly, a family with three heterozygous 
mutations carried two frameshifts (p.(Leu2285Glnfs*32); 
p.(Ser3327  Tyrfs*14)) and one apparently synonymous sub-
stitution (p.(Lys1247=)). We speculate that this synonymous 

substitution may also disrupt splicing as the altered nucleotide 
(c.3741G>A) is present at the 5′ end of exon 15 of ASPM. The 
effect of this variation on splicing, however, could not be ver-
ified due to the unavailability of RNA from the patient. The 
remaining 14 families segregated already reported 11 mutations 
(Table 1) (Ahmad et al., 2017; Bond et al., 2003; Darvish et al., 
2010; Gul et al., 2006, 2007; Nicholas et al., 2009; Passemard 
et al., 2009, 2016). Three of these known mutations were found 
in two families each (Table 1). The homozygous frameshift mu-
tation c.8190_8193AGAA;p.(Arg2732Lysfs*4) has been pre-
viously reported in the compound heterozygous state together 
with c.3945_3946delATCTT;p.Arg1315Serfs*2 (Passemard 
et al., 2009). All the patients carrying ASPM mutation(s) man-
ifested one or more comorbidities such as seizures, stuttering, 
hypersalivation, and cup-shaped ears. One notable additional 
feature was bilateral hearing impairment (HI), observed in two 
(out of three) patients of family 14 who carry a protein-truncat-
ing ASPM mutation (Table S3). Sensorineural hearing loss has 
previously been reported in MCPH patients carrying mutations 
in ASPM and CDK5RAP2 (Darvish et al., 2010; Pagnamenta 
et al., 2012). To check for the possibility of an independent mu-
tation causing HI in these patients, we interviewed the extended 
family for a history of HI segregating independently of MCPH, 
but it was found unremarkable. Parallel to the sequencing ap-
proach, genome-wide linkage analysis was also performed 
in five selected families on the Axiom Precision Medicine 
Research Array (PMRA) from Affymetrix (Santa Clara, CA), 
which delineated the homozygous segments on chromosome 1 
harboring ASPM (Figure S4), thus providing further evidence 
for the involvement of this gene in disease causation.

The second most frequently mutated gene (15.62%) in our 
cohort was WDR62. In this gene, five mutations were identi-
fied which included one novel missense and four known pro-
tein-truncating variants (Table 1 and Figure 1) (Nicholas et al., 
2010; Sajid Hussain et al., 2013; Yu et al., 2010). The missense 
mutation c.2195C>T;p.(Thr732Ile), identified in family 4, is 
predicted to be deleterious and disease causing by a number of 
bioinformatics tools (CADD score = 30, PROVEAN = −4.262, 
Mutation Taster = 89, PolyPhen-2 = 0.99 and SIFT = 0.01). 
Further, this mutation is not documented in any of the public 
databases of genomic variants. Genome-wide linkage analysis 
for selected members of this family revealed a homozygous 
segment on chromosome 19 at cytoband 19q13.1-13.3 with a 
LOD score of 5.4. This homozygous segment (rs73039760-
32,418,599 bp to rs4141695-44,985,674 bp) contains WDR62, 
the only gene in which a deleterious mutation was identified 
(Figure S4). In addition to core symptoms of microcephaly 
(mean HC = −10 SD), mild to moderate intellectual disability, 
the patients also presented speech impairment, short stature (in 
V-6), and seizures (in IV-1) (Table S3).

Family 3 from our cohort was identified with a novel 
mutation in CDK5RAP2. Affected individuals of this fam-
ily presented severe microcephaly with HC ranging −11 to 

http://varbank.ccg.uni-koeln.de
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−12 SD, speech impairment, and short stature ranging from 
−5 SD to −6 SD (Table S3). Linkage analysis of this family 
indicated four peaks reaching the theoretical maximum LOD 
score of 3.01 on chromosome 8, 9, 13, and 20. The candi-
date variant obtained from exome sequencing was located in 
the linkage region on chromosome 9 (Figure S4). It was a 
homozygous truncating mutation in exon 6 of CDK5RAP2 
(NM_018249.5;c.448C>T;(p.Arg150*)) (Table 1).

One family of our cohort carried a previously reported 
homozygous frameshift mutation c.18delC;p.(Ser7Profs*2) 
of CENPJ (Bond et al., 2005). We also identified two novel 
mutations in STIL; one nonsense mutation c.3694C>T;p.
(Arg1232*) in family 24 and a frameshift mutation 
c.3759dupT;p.(Pro1254Serfs*2) in family 29 (Figure 1 and 
Table 1). One family was identified with the nonsense muta-
tion c.3157G>T;p.(Glu1053*) in CEP135 (Table 1).

4  |   DISCUSSION

ASPM encodes abnormal spindle-like microcephaly-associ-
ated protein and is the most common cause of MCPH con-
tributing 40% to 68% of MCPH cases (Letard et al., 2018; 
Zaqout et al., 2017). The findings of this study are in line 
with previous reports because we have also observed 68.75% 
(22/32) families carrying a mutation in ASPM. Building on 
another elegant study by Letard and colleagues (Letard et al., 
2018)—summarizing 189 ASPM mutations in 282 previously 
reported and 39 new families—we reviewed the literature 
published thereafter and extended the mutational spectrum 
to 211 in 381 families (Ahmed et al., 2019; Bazgir, Agha 
Gholizadeh, Sarvar, & Pakzad, 2019; Bhargav, Sreedevi, 
Swapna, Vivek, & Kovvali, 2017; Boonsawat et al., 2019; 
Khan, Wang, Han, Ahmad, & Zhang, 2018; Kvarnung et al., 
2018; Li et al., 2017; Marakhonov et al., 2018; McSherry 
et al., 2018; Moriwaki et al., 2019; Okamoto, Kohmoto, 
Naruto, Masuda, & Imoto, 2018; Shaheen et al., 2019). This 
number also includes 10 novel mutations of 8 families identi-
fied in this study (Figure 1 and Table S4).

Intriguingly, our cohort did not show the previously identified 
founder mutation, c.3978G; p.(Trp1326*), of Northern Pakistani 
Pashtun ethnicity (Ahmad et al., 2017). One explanation for this 
discrepancy is that none of the families recruited for this study 
belonged to Pashtun ethnicity; rather they originated from a re-
gion with population composition of diverse ethnic background. 
Thus our findings support this mutation to be a founder event, 
rather than a recurrent mutation. It is, however, noteworthy that 
our cohort contains a family carrying another recurrent muta-
tion—c.7782_7783delGA;p.(Lys2595Serfs*6)—of ASPM, 
which has been reported in several different ethnic groups orig-
inating from Europe, Africa, and Asia (Letard et al., 2018). 
Another nonsense mutation, ASPM:c.9557C>G;p.(Ser3186*), 
reported exclusively in even Pakistani families, is also found in 

a family from our cohort (Table 1 and Figure 1), which increases 
the number of families with this particular mutation from 7 to 
8. This observation indicated that it could be another founder 
mutation in the Pakistani population.

Our data also supported the notion that WDR62 (MIM# 
613583) is the second most frequently mutated gene (14%) of 
MCPH (Zaqout et al., 2017), because we have found a nearly 
similar number of MCPH families (15.62%) with mutations 
in this gene. After a thorough literature review of WDR62 
mutations by Poulton and colleagues (Poulton et al., 2014), 
summarizing a total of 24 mutations, 29 new mutations were 
published thereafter (Kvarnung et al., 2018; Yi et al., 2019; 
Zombor et al., 2019). The novel missense mutation reported 
in our study increased the total number of identified muta-
tions to 54 (Figure 1 and Table S5).

So far, 24 mutations of 24 families have been reported in 
CDK5RAP2 and the identification of the novel nonsense mu-
tation in this study increased this number to 25 (Figure 1 and 
Table S6) (Ahmad et al., 2017; Issa et al., 2013; Shaheen et al., 
2019). A few cases of ASPM and CDK5RAP2-related MCPH 
have been reported with short stature at birth, but the major-
ity of them attained normal height at a later age (Issa et al., 
2013; Passemard et al., 2009). Our patients show short stature 
at the age of 10 years, which adds to the phenotypic spectrum 
due to CDK5RAP2 dysfunction. Notably, one of the patients 
(V-6) of family 4 mutated with WDR62 also show short stat-
ure clinically diagnosed only at the age of 18 years. This is 
another example of a patient unable to attain normal height at 
adult age. The literature survey revealed only eight mutations 
of CENPJ found in 17 families, including one reported in this 
study, manifesting the MCPH phenotype (Figure 1 and Table 
S7) (Darvish et al., 2010; Sajid Hussain et al., 2013; Shaheen 
et al., 2019). This frameshift mutation could reasonably be 
a founder mutation of the Pakistani population as this is the 
5th consecutive Pakistani family reported with this mutation. 
Analysis of published data about disease-causing STIL muta-
tions and by including two novel mutations found in this study 
raise the total number of STIL mutations to 13 in 12 families 
(Figure 1 and Table S8) (Cristofoli, De Keersmaecker, De 
Catte, Vermeesch, & Van Esch, 2017; Shaheen et al., 2019). 
Nonsense mutation of CEP135 could most likely cause non-
sense-mediated decay of the mutant transcript; else it would 
result in a truncated protein, lacking the C-terminus. Hitherto, 
only three mutations have been reported in CEP135 and our 
report of this additional one raises this number to 4 in four 
families (Figure 1 and Table S9) (Farooq et al., 2016; Hussain 
et al., 2012; Shaheen et al., 2019).

Conclusively, in 32 families from Pakistan, we have iden-
tified 15 novel variants and 16 previously reported ones in 
well-characterized MCPH genes (Table 1). Functional evalu-
ation of the novel variants will elucidate their effect on neuro-
genesis and the development of the MCPH phenotype. It will 
also help to develop correlation with the type of mutation and 
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the severity of the disease. Finally, the review of published 
variants and addition of pathogenic variants of MCPH genes 
provided by this study will be helpful for devising diagnostic 
strategies for MCPH.
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